Potencialidades de la diversidad bacteriana asociada al trigo (Triticum aestivum L.) para estimular su crecimiento

Main Article Content

Yoania Ríos Rocafull
https://orcid.org/0000-0003-1774-0868
Marisel Ortega García
https://orcid.org/0000-0002-8076-2675
Janet Rodríguez Sánchez
https://orcid.org/0000-0002-8974-9215
Bernardo Dibut Álvarez
https://orcid.org/0000-0002-5537-8591

Resumen

Contexto: Algunos microorganismos estimulan el crecimiento de las plantas, por lo que en la investigación se trabajó con la diversidad bacteriana asociada al cultivo del trigo para seleccionar cepas promisorias para su uso agrícola.


Objetivo: Seleccionar de la diversidad bacteriana asociadas a plantas de trigo, cepas promisorias para estimular el crecimiento de este cultivo.


Métodos: Se aislaron bacterias desde la rizosfera y el interior de plantas de trigo (cultivares Cuba C 204 e I 399). Se caracterizó en condiciones in vitro su potencial para fijar nitrógeno, solubilizar nutrientes y su actividad antagonista frente a Fusarium sp y Curvularia lunata. Se inocularon las cepas en semillas de trigo en condiciones semicontroladas y se evaluó su efecto sobre indicadores del crecimiento.


Resultados: Se aislaron diferentes microorganismos, dentro de ellos cuatro cepas categorizadas como Bacillus, cuatro Azotobacter y dos como Azospirillum, según su morfo-fisiología. Todos estos microorganismos fijaron nitrógeno atmosférico, y a excepción de una cepa, solubilizaron nutrientes y presentaron actividad antagonista frente a F. graminearum, F. chlamydosporum, F. oxysporum y C. lunata. Su inoculación en trigo demostró que es posible utilizar la diversidad bacteriana asociada a la especie vegetal para estimular el crecimiento de plántulas de 21 días de los cultivares Cuba C 204 e I 399.


Conclusiones: Asociados a las plantas de trigo existe una diversidad microbiana con potencial para estimular el crecimiento en condiciones in vitro e in vivo, algunas de ellas promisorias para la obtención de un nuevo bioproducto de uso agrícola que incremente el rendimiento del cultivo bajo las condiciones de Cuba.

Descargas

La descarga de datos todavía no está disponible.

Resumen

Contexto: Algunos microorganismos estimulan el crecimiento de las plantas, por lo que en la investigación se trabajó con la diversidad bacteriana asociada al cultivo del trigo para seleccionar cepas promisorias para su uso agrícola.


Objetivo: Seleccionar de la diversidad bacteriana asociadas a plantas de trigo, cepas promisorias para estimular el crecimiento de este cultivo.


Métodos: Se aislaron bacterias desde la rizosfera y el interior de plantas de trigo (cultivares Cuba C 204 e I 399). Se caracterizó en condiciones in vitro su potencial para fijar nitrógeno, solubilizar nutrientes y su actividad antagonista frente a Fusarium sp y Curvularia lunata. Se inocularon las cepas en semillas de trigo en condiciones semicontroladas y se evaluó su efecto sobre indicadores del crecimiento.


Resultados: Se aislaron diferentes microorganismos, dentro de ellos cuatro cepas categorizadas como Bacillus, cuatro Azotobacter y dos como Azospirillum, según su morfo-fisiología. Todos estos microorganismos fijaron nitrógeno atmosférico, y a excepción de una cepa, solubilizaron nutrientes y presentaron actividad antagonista frente a F. graminearum, F. chlamydosporum, F. oxysporum y C. lunata. Su inoculación en trigo demostró que es posible utilizar la diversidad bacteriana asociada a la especie vegetal para estimular el crecimiento de plántulas de 21 días de los cultivares Cuba C 204 e I 399.


Conclusiones: Asociados a las plantas de trigo existe una diversidad microbiana con potencial para estimular el crecimiento en condiciones in vitro e in vivo, algunas de ellas promisorias para la obtención de un nuevo bioproducto de uso agrícola que incremente el rendimiento del cultivo bajo las condiciones de Cuba.

Article Details

Cómo citar
Ríos Rocafull, Y., Ortega García, M., Rodríguez Sánchez, J., & Dibut Álvarez, B. (2022). Potencialidades de la diversidad bacteriana asociada al trigo (Triticum aestivum L.) para estimular su crecimiento. Agrisost, 28, 1-9. https://doi.org/10.5281/zenodo.7649987
Sección
Agrobiodiversidad

Citas

Alves, C.J., Arf, O., Ramos, A.F., Galindo, F.S., Nogueira, L.M., & Rodrigues, R.A.F. (2017). Irrigated wheat subjected to inoculation with Azospirillum brasilense and nitrogen doses as top-dressing. Revista Brasileira de Engenharia Agrícola e Ambiental, 21 (8), 537-542. https://doi.org/10.1590/1807-1929/agriambi.v21n8p537-542
Andrade, F. C., Fernandes, F., Oliveira, A., Rondina, A.B.L., Hungria, M., & Nogueira, M.A. (2021). Enrichment of organic compost with beneficial microorganisms and yield performance of corn and wheat. Brazilian Journal of Agricultural and Environmental Engineering, 25 (5), 332-339. http://dx.doi.org/10.1590/1807-1929/agriambi.v25n5p332-339
Baldani, I., Massena Reis, V., Videira, S., & Boddey, L. H. (2014). The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant Soil, 384, 413–431 (2014). https://doi.org/10.1007/s11104-014-2186-6
Brenner, D.J., Krieg, N.R., & Stanley, J. T. (Eds.) (2005). Volume 2: The Proteobacteria. Part B. The Ganmaproteobacteria. En Bergey’s Manual os Sytematic Bacteriology. (pp. 384-402). Springer US.
Cavalcante, V.A., & Dobereiner, J. (1988). A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil, 108, 23–31. https://doi.org/10.1007/BF02370096
Cesa-Luna, C., Baez, A., Quintero-Hernández, V., de La Cruz, J., Castañeda-Antonio, M. D., & Muñoz-Rojas, J. (2020). Importancia de compuestos antimicrobianos producidos por bacterias benéficas en el biocontrol de fitopatógenos. Acta Biológica Colombiana, 25(1), 140-154. http://dx.doi.org/10.15446/abc.v25n1.76867
Chinakwe, E.C., Ibekwe, V.I., Nwogwugwu, U.N., Onyemekara, N.N., Ofoegbu, J., Mike-Anosike, E., Emeakaraoha, M., Adeleye, S., & Chinakwe P.O. (2019). Microbial population changes in the rhizosphere of tomato Solanum lycopersicum varieties during early growth in greenhouse. Malaysian Journal of Sustainable Agriculture (MJSA), 3(1), 23-27. http://doi.org/10.26480/mjsa.01.2019.23.27
de la Fé, Y., Díaz de la Osa, A., Restrepo, G. M., Diván- Baldani V. L., & Hernández, A. (2015). Diversidad de bacterias diazotróficas asociativas potencialmente eficientes en cultivos de importancia económica. Revista Cubana de Ciencias Biológicas, 4(1), 17-26. http://www.rccb.uh.cu/index.php/RCCB/article/view/85
Departamento de Suelos y Fertilizantes. (2018). Manual Práctico para el Uso de Bioproductos. Órgano Central del Ministerio de la Agricultura.
Grobelak, A., Napora, A., & Kacprzak, M. (2014). The impact of plant growth promoting bacteria (PGPB) on the development of phytopathogenic fungi. Folia Biologica et Oecologica, 10, 107-112. http://doi.org/10.2478/fobio-2014-0008
González, H., & Fuentes, N. (2017). Mecanismo de acción de cinco microorganismos promotores de crecimiento vegetal. Revista de Ciencias Agrarias, 34(1), 17-31. http://dx.doi.org/10.22267/rcia.173401.60
Harrigan, W.F., & Mc Cance, M. (1968). Métodos de Laboratorio en Microbiología. Ed. Academia.
Hernández, A., Pérez, J.M., Bosch, D. & Castro, N. (2015). Clasificación de los suelos de Cuba. Instituto Nacional de Ciencias Agrícolas, Instituto de Suelos. Ediciones INCA.
Hernández, J. J., Morales, P.G., Rodríguez, R.F., & Sánchez, J.M. (2015). Inoculación de Burkholderia cepacia y Gluconacetobacter diazotrophicus sobre la fenología y biomasa de Triticum aestivum var. Nana F2007 a 50% de fertilizante nitrogenado. Scientia Agropecuaria, 6(1), 7–16. https://doi.org/10.17268/sci.agropecu.2015.01.01
Hernández, J.L., Cubillos, J.G., & Milian, P.E. (2012). Aislamiento de cepas de Rhizobium spp., asociados a dos leguminosas forrajeras en el Centro Biotecnológico del Caribe. Revista Colombiana de Microbiología Tropical, 2(2), 51-62. https://www.researchgate.net/publication/298069900_Aislamiento_de_cepas_de_Rhizobium_spp_asociados_a_dos_leguminosas_forrajeras_en_el_Centro_Biotecnologico_del_Caribe_Isolation_of_Rhizobium_spp_associated_two_forage_leguminous_in_the_Caribbean_Biotech
Madigan, M.T., Bender, K.S., Buckley, D.H., Sattley, W. M., & Sthal, D.A. (2018). Brock Biology of Microorganisms. (15th edition). Published by Pearson.
Mahmoud, A.F. (2016). Genetic variation and biological control of Fusarium graminearum isolated from wheat in Assiut-Egypt. Plant Pathology Journal, 32(2),145-156. https://doi.org/10.5423/PPJ.OA.09.2015.0201
Martínez, V. R., López, M., Brossard, F. M., Tejeda, G. G., Pereira, A. H., Parra, Z. C., Rodríguez, S. J., & Alba, A. (2006). Procedimientos para el estudio y fabricación de Biofertilizantes Bacterianos. Ed. INIA.
Martínez, S., Gómez-Kosky, R., Rodríguez, G., Veitia, N., Saucedo, O., & Gil, V. (2016). Caracterización morfoagronómica de plantas de sorgo granífero variedad CIAP 132R-5 regeneradas vía embriogénesis somática en condiciones de campo. Centro Agrícola, 43(3), 73-79. http://cagricola.uclv.edu.cu/descargas/pdf/V43-Numero_3/cag09316.pdf
Pedraza, L. A., López, C. E., & Uribe-Vélez, D. (2020). Mecanismos de acción de Bacillus spp. (Bacillaceae) contra microorganismos fitopátogenos durante su interacción con planta. Acta Biológica Colombiana, 25(1), 112-125. http://dx.doi.org/10.15446/abc.v25n1.75045
Pérez-Pazos, J.V., & Sánchez, D.B. (2017). Caracterización y efecto de Azotobacter, Azospirillum y Pseudomonas asociadas a Ipomoea Batatas del Caribe Colombiano. Revista Colombiana de Biotecnología, 19(2), 35-46. https://doi.org/10.15446/rev.colomb.biote.v19n2.69471
Piña, J., García, V., Herrera, H., & Flores, J. A. (2016). Valoración de cepas silvestres de Azospirillum sp. y Gluconacetobacter sp. como promotoras de crecimiento vegetal. Revista Mexicana de Ciencias Agrícolas, 7(7), 1613-1623. http://www.scielo.org.mx/pdf/remexca/v7n7/2007-0934-remexca-7-07-1613.pdf
Rojas, M. M., Sánchez, D., Rosales, K., & Lugo, D. (2017). Antagonismo de Bacillus frente a hongos fitopatógenos de cultivos hortícolas. Revista de Protección Vegetal, 32(2), 1-9. http://scielo.sld.cu/scielo.php?pid=S1010-27522017000200005&script=sci_arttext&tlng=pt
Rojas, M. M., Tejera, B., Bosh, D.M., Ríos, Y., Rodríguez, J., & Heydrich, M. (2016). Potentialities of Bacillus strains for promoting growth in maize (Zea mays L.) Cuban Journal of Agricultural Science, 50(3), 485-496. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2079-34802016000300016
Ruiz-Sánchez, E., Mejía-Bautista, M.Á., Serrato-Díaz-Serrato, A., Reyes-Ramírez, A., Estrada-Girón, Y., & Valencia-Botín, A.J. (2016). Actividad antifungica e identificacion molecular de cepas nativas de Bacillus subtilis. Agrociencia, 50, 133-148. http://www.scielo.org.mx/pdf/agro/v50n2/1405-3195-agro-50-02-00133.pdf
Saldaña, J.M. (2017). Aislamiento e identificación de cepas nativas de Rhizobium phaseoli de Suelo de la Presa de la Juventud de Marín, Nuevo León. Revista Iberoamericana de Producción Académica y Gestión Educativa, 4(7). https://www.pag.org.mx/index.php/PAG/article/view/659/826
Toledo-Hernández, E., Peña-Chora, G., Toribio-Jiménez, J., Romero-Ramírez, Y., Bolaños-Dircio, A., Velázquez-del Valle, M. G., Hernández-Lauzardo, A.N., León-Rodríguez, R., & Vero, S. (2021). Isolated rhizobacteria of Jatropha curcas L.: antagonistic activity of phytopathogens and plant growth promoter. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 27(2), 181-198. https://doi.org/10.5154/r.rchscfa.2020.04.029
Vega-Celedón, P., Canchignia, H., González, M., & Seeger, M. (2016). Biosíntesis de ácido indol 3-acético y promoción del crecimiento de plantas por bacterias. Cultivos Tropicales, 37 (N° especial), 33-37. http://dx.doi.org/10.13140/RG.2.1.5158.3609
Villarreal-Delgado, M.F., Villa-Rodríguez, E.D., Cira-Chávez, L.A., Estrada-Alvarado, M.I., Parra-Cota, F.I., & de los Santos-Villalobos, S. (2017). The genus Bacillus as a biological control agent and its implications in the agri-cultural biosecurity. Revista Mexicana de Fitopatología, 36(1), 95-130. https://doi.org/10.18781/R.MEX.FIT.1706-5
Vital, L., Cruz, M.A., Fernández, S., & Mendoza, A. (2015). Diversidad bacteriana en raíces de maíz híbrido convencional y genéticamente modificado. ФYТОN. Revista Internacional de Botánica Experimental, 84, 233-243. http://www.scielo.org.ar/pdf/phyton/v84n1/v84n1a30.pdf
Yadav, A. N. (2017). Agriculturally Important Micro biomes: Biodiversity and Multifarious PGP Atributes for Amelioration of Diverse Abiotic Stresses in Crops for Sustainable Agriculture. Biomedical Journal of Scientific and Technical Research, 1(4),1- 4. https://doi.org/10.26717/BJSTR.2017.01.000321
Zahid, M., Kaleem, M., Hameed, S., & Rahim, N. (2015). Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Front. Microbiol., 6, 207, 1-10. https://doi.org/10.3389/fmicb.2015.00207