Probióticos: una realidad en el cultivo de camarones. Artículo de revisión
Abstract
La camaronicultura es uno de los sectores más lucrativos y de mayor crecimiento dentro de la acuicultura marina; sin embargo, la intensificación del cultivo para satisfacer una demanda cada vez mayor ha incrementado la incidencia de enfermedades produciendo pérdidas económicas considerables. La prevención y control de los brotes se basa fundamentalmente en antimicrobianos, lo cual es criticado por la acumulación de residuos en el ambiente, el desarrollo de resistencia y poca aceptación de los productos por parte de los consumidores. Alternativamente, se proponen métodos más amigables con el medio ambiente, como la aplicación de probióticos, un procedimiento de gran versatilidad y considerables beneficios ampliamente aceptado en la producción de camarón a nivel mundial. Los probióticos son capaces de controlar patógenos por múltiples mecanismos, promover el crecimiento del hospedero y mejorar la calidad del ambiente de cultivo. Adicionalmente pueden ser administrados por varias vías y en combinación con otras sustancias beneficiosas. Este artículo provee una actualización sobre la aplicación de probióticos en el cultivo de camarón, con énfasis en su influencia en el incremento de la productividad.
Palabras clave: camaronicultura, productividad, camarón, probiótico, mecanismo de acción
Downloads
References
ACHUPALLAS, J. M.; ZHOU, Y. y DAVIS, D. A. (2016).
Pond Production of Pacific White Shrimp, Li-
topenaeus vannamei, Fed Grain Distillers Dried
Yeast. Aquaculture Nutrition, 22 (6), 22-29.
AGUIRRE-GUZMÁN, G.; CAMPA-CORDOVA, A. I.;
SANCHEZ-MARTÍNEZ, J. G.; LUNA-GONZÁLEZ, A.;
y ASCENCIO, F. (2009). Penaeid Shrimp Immune
System. Thai J. Vet. Med., 3 (39), 205-215.
AHMAD, I.; RANI, A. B.; VERMA, A. K. y MAQSOOD,
M. (2017). Biofloc Technology: an Emerging Ave-
nue in Aquatic Animal Healthcare and Nutrition.
Aquaculture International, 25 (3), 15-26.
BALCÁZAR, J. L. y ROJAS-LUNA, T. (2007). Inhibitory
Activity of Probiotic Bacillus subtilis UTM 126
Against Vibrio Species Confers Protection against
Vibriosis in Juvenile Shrimp (Litopenaeus van-
namei). Curr Microbiol, 55 (5), 409-412.
BOLÍVAR RAMÍREZ, N.; SEIFFERT, W. Q.; VIEIRA, F.;
MOURIÑO, J. et al. (2013). Prebiotic, Probiotic, and
Symbiotic-Supplemented Diet for Marine Shrimp
Farming. Pesquisa Agropecuária Brasileira, 48 (8),
913-919.
BOONTHAI, T.; VUTHIPHANDCHAI, V. y NIMRAT, S.
(2011). Probiotic Bacteria Effects on Growth and
Bacterial Composition of Black Tiger Shrimp (Pe-
naeus monodon). Aquaculture Nutrition, 17 (6), 34-
38.
BOSSIER, P.; DE SCHRIJVER, P.; DEFOIRDT, T.;
RUWANDEEPIKA, H. A. D.; NATRAH, F.; EKASARI,
J. et al. (2016). Microbial Community Management
in Aquaculture. Procedia Food Science, 6 (1), 37-
39.
BRACKMAN, G.; CELEN, S.; HILLAERT, U.; VAN
CALENBERGH, S.; COS, P.; MAES, L., et al. (2011).
Structure-Activity Relationship of Cinnamaldehyde
Analogs as Inhibitors of AI-2 Based Quorum Sens-
ing and Their Effect on Virulence of Vibrio spp.
PLoS ONE, 6 (1), 16-21.
Probióticos: una realidad en el cultivo de camarones. Artículo de revisión
R e v . p r o d . a n i m . , 3 0 ( 2 ) , 5 9 - 7 3 , 2 0 1 8
BRACKMAN, G.; DEFOIRDT, T.; MIYAMOTO, C.;
BOSSIER, P.; VAN CALENBERGH, S., NELIS, H. J. et
al. (2008). Cinnamaldehyde and Cinnamaldehyde
Derivatives Reduce Virulence in Vibrio spp. by
Decreasing the DNA-Binding Activity of the
Quorum Sensing Response Regulator LuxR. BMC
Microbiology, 8 (1), 1-14.
BURGE, E. J.; MADIGAN, D. J.; BURNETT, L. E. y
BURNETT, K. G. (2007). Lysozyme Gene Expres-
sion by Hemocytes of Pacific White Shrimp, Li-
topenaeus vannamei, After Injection with Vibrio.
Fish & Shellfish Immunology, 22 (1), 27-39.
CABELLO, F. C.; GODFREY, H. P.; TOMOVA, A.;
IVANOVA, L.; DÖLZ, H. et al. (2013). Antimicrobial
use in aquaculture re‐examined: its relevance to an-
timicrobial resistance and to animal and human
health. Environmental Microbiology, 15 (7), 1917-
1942.
CASTEX, M.; LEMAIRE, P.; WABETE, N. y CHIM, L.
(2010). Effect of Probiotic Pediococcus acidilactici
on Antioxidant Defences and Oxidative Stress of
Litopenaeus stylirostris under Vibrio nigripulchri-
tudo Challenge. Fish Shellfish Immunol, 28 (4), 10-
16.
CHAI, P. C.; SONG, X. L.; CHEN, G. F.; XU, H. y
HUANG, J. (2016). Dietary Supplementation of
Probiotic Bacillus PC465 Isolated from the Gut of
Fenneropenaeus chinensis Improves the Health
Status and Resistance of Litopenaeus vannamei
Against White Spot Syndrome Virus. Fish Shellfish
Immunol, 54 (2), 2-10.
CHUMPOL, S.; KANTACHOTE, D.; NITODA, T. y
KANZAKI, H. (2017). The Roles of Probiotic Purple
Nonsulfur Bacteria to Control Water Quality and
Prevent Acute Hepatopancreatic Necrosis Disease
(AHPND) for Enhancement Growth with Higher
Survival in White Shrimp (Litopenaeus vannamei)
During Cultivation. Aquaculture, 47 (1), 27-33.
CRAB, R.; DEFOIRDT, T.; BOSSIER, P. y VERSTRAETE,
W. (2012). Biofloc Technology in Aquaculture:
Beneficial Effects and Future Challenges. Aquacul-
ture, 35 (1), 51-56.
CZAJKOWSKI, R. y JAFRA, S. (2009). Quenching of
Acyl-Homoserine Lactone-Dependent Quorum
Sensing by Enzymatic Disruption of Signal Mole-
cules. Act. Bioquimic. Polonic., 56 (1), 1-16.
DALMIN, G.; KATHIRESAN, K. y PURUSHOTHAMAN, A.
(2001). Effect of Probiotics on Bacterial Population
and Health Status of Shrimp in Culture Pond Eco-
system. Indian J Exp Biol, 39 (9), 39-42.
DEFOIRDT, T. (2014). Virulence Mechanisms of Bacte-
rial Aquaculture Pathogens and Antivirulence
Therapy for Aquaculture. Reviews in Aquaculture,
6 (2), 100-114.
DEFOIRDT, T. (2016). Specific Antivirulence Activity,
a New Concept for Reliable Screening of Virulence
Inhibitors. Trends in Biotechnology, 34 (7), 27-31.
DEFOIRDT, T.; BENNECHE, T.; BRACKMAN, G.;
COENYE, T.; SORGELOOS, P. y SCHEIE, A. A.
(2012). A Quorum Sensing-Disrupting Brominated
Thiophenone with a Promising Therapeutic Poten-
tial to Treat Luminescent Vibriosis. PLoS ONE, 7
(1), 41-48.
DEFOIRDT, T.; BOON, N. y BOSSIER, P. (2010). Can
Bacteria Evolve Resistance to Quorum Sensing
Disruption? Plos Pathogens, 6 (1), 13-20.
DEFOIRDT, T.; SORGELOOS, P. y BOSSIER, P. (2011).
Alternatives to Antibiotics for the Control of Bacte-
rial Disease in Aquaculture. Curr. Opin. Microbi-
ol., 14 (3), 51-58.
EKASARI, J.; AZHAR, M. H.; SURAWIDJAJA, E. H.;
NURYATI, S.; DE SCHRYVER, P. y BOSSIER, P.
(2014). Immune Response and Disease Resistance
of Shrimp Fed Biofloc Grown on Different Carbon
Sources. Fish & Shellfish Immunology, 41 (2), 32-
39.
FAKRUDDIN, M.; HOSSAIN, M. N. y AHMED, M. M.
(2017). Antimicrobial and Antioxidant Activities of
Saccharomyces Cerevisiae IFST062013, a Potential
Probiotic. BMC Complement Altern Med, 17 (1),
64-68.
FAO (2004). Manejo sanitario y mantenimiento de la
bioseguridad de los laboratorios de postlarvas de
camarón blanco (Penaeus vannamei) en América
Latina. Roma, Italia: FAO.
FERREIRA, M. G. P.; MELO, F. P.; LIMA, J. P. V.;
ANDRADE, H. A.; SEVERI, W. y CORREIA, E. S.
(2017). Bioremediation and Biocontrol of Com-
mercial Probiotic in Marine Shrimp Culture with
Biofloc. Latin American Journal of Aquatic Re-
search, 45 (1), 67-69.
FRANCO, R.; ARENAL, A.; MARTÍN, L.; MARTÍNEZ, Y.;
SANTIESTEBAN, D.; SOTOLONGO, J. et al. (2016a).
Psychrobacter sp. 17-1 Enhances Growth and Sur-
vival in Early Postlarvae of White Shrimp Penaeus
vannamei (Boone, 1931) (Decapoda, Penaeidae).
Crustaceana, 89, (13), 1467-1484.
FRANCO, R.; MARTÍN, L.; ARENAL, A.; SANTIESTEBAN,
D.; SOTOLONGO, J., CABRERA, H. et al. (2016b).
Evaluation of Two Probiotics used During Farm
Production of White Shrimp Litopenaeus vannamei
(Crustacea: Decapoda). Aquaculture Research, 48,
(4), 1936-1950.
GAMBOA-DELGADO, J.; FERNÁNDEZ-DÍAZ, B.; NIETO-
LÓPEZ, M. y CRUZ-SUÁREZ, L. E. (2016). Nutri-
tional Contribution of Torula Yeast and Fish Meal
to the Growth of Shrimp Litopenaeus vannamei as
Indicated by Natural Nitrogen Stable Isotopes. Aq-
uaculture, 453 (1), 116-121.
A. Toledo, N. M. Castillo, Olimpia Carrillo, A. Arenal
R e v . p r o d . a n i m . , 3 0 ( 2 ) , 5 9 - 7 3 , 2 0 1 8
GOTHWAL, R. y SHASHIDHAR, T. (2015). Antibiotic
Pollution in the Environment: a Review. CLEAN–
Soil, Air, Water, 43 (4), 479-489.
HADIROSEYANI, Y. y SUTANTI, A. (2014). Growth of
Tiger Shrimp Penaeus Monodon Post-Larvae Fed
on Artemia Containing Vibrio SKT-b Probiotic.
Jurnal Akuakultur Indonesia, 12 (1), 79-85.
HOSEINIFAR, S. H., SUN, Y. Z. y CAIPANG, C. M.
(2017). Short‐Chain Fatty Acids as Feed Supple-
ments for Sustainable Aquaculture: an Updated
View. Aquaculture Research, 48 (4), 1380-1391.
HUANG, H. H.; LIU, X. L.; XIANG, J. H. y WANG, P.
(2013). Immune Response of Litopenaeus van-
namei after Infection with Vibrio harveyi. Aquacul-
ture, 406 (1), 115-120.
IYAPPARAJ, P.; MARUTHIAH, T.; RAMASUBBURAYAN,
R.; PRAKASH, S.; KUMAR, C.; IMMANUEL, G. et al.
(2013). Optimization of Bacteriocin Production by
Lactobacillus sp. MSU3IR Against Shrimp Bacte-
rial Pathogens. Aquatic biosystems, 9 (1), 12-16.
JAMALI, H.; IMANI, A.; ABDOLLAHI, D.; ROOZBEHFAR,
R. y ISARI, A. (2015). Use of probiotic Bacillus
spp. in rotifer (Brachionus plicatilis) and Artemia
(Artemia urmiana) enrichment: Effects on growth
and survival of Pacific white shrimp, Litopenaeus
vannamei, Larvae. Probiotics and antimicrobial
proteins, 7 (2), 118-125.
JAVADI, A. y KHATIBI, S. A. (2017). Effect of Com-
mercial Probiotic (Protexin®) on Growth, Survival
and Microbial Quality of Shrimp (Litopenaeus
vannamei). Nutrition & Food Science, 47 (2), 204-
216.
KAMEI, Y.; YOSHIMIZU, M.; EZURA, Y. y KIMURA, T.
(1988). Screening of Bacteria with Antiviral Activi-
ty from Fresh Water Salmonid Hatcheries. Micro-
biology and Immunology, 32 (1), 67-73.
KARTHIK, V.; ANCY, T.; RAMKUMAR, D.;
MATHIVANAN, N. y NARAYANAN, R. B. (2014).
Assessment of Antimicrobial Activity of C-Type
lysozyme from Indian Shrimp Fenneropenaeus In-
dicus. Journal of Coastal Life Medicine, 2 (10),
757-761.
KIM, M. S.; MIN, E.; KIM, J. H.; KOO, J. K. y KANG, J.
C. (2015). Growth Performance and Immunological
and Antioxidant Status of Chinese Shrimp, Fen-
nerpenaeus chinensis Reared in Bio-Floc Culture
System using Probiotics. Fish Shellfish Immunol,
47 (1), 141-146.
KUMAR, V.; ROY, S.; MEENA, D. K. y SARKAR, U. K.
(2016). Application of Probiotics in Shrimp Aqua-
culture: Importance, Mechanisms of Action, and
Methods of Administration. Reviews in Fisheries
Science & Aquaculture, 24 (4), 342-368.
LAKSHMI, B.; VISWANATH, B. y SAI GOPAL, D. V.
(2013). Probiotics as Antiviral Agents in Shrimp
Aquaculture. J Pathog, 2013 (1), 1-14.
LAMARI, F.; SADOK, K.; BAKHROUF, A. y GATESOUPE,
F.-J. (2014). Selection of Lactic Acid Bacteria as
Candidate Probiotics and In Vivo Test on Artemia
nauplii. Aquaculture International, 22 (2), 699-709.
LARANJA, J. L. Q.; LUDEVESE-PASCUAL, G. L.; AMAR,
E. C.; SORGELOOS, P.; BOSSIER, P. y DE
SCHRYVER, P. (2014). Poly-β-hydroxybutyrate
(PHB) Accumulating Bacillus spp. Improve the
Survival, Growth and Robustness of Penaeus mon-
odon Postlarvae. Veterinary microbiology, 173 (3),
310-317.
LIU, H.; LI, Z.; TAN, B.; LAO, Y.; DUAN, Z., SUN, W.
et al. (2014). Isolation of a Putative Probiotic Strain
S12 and its Effect on Growth Performance, Non-
Specific Immunity and Disease-Resistance of
White Shrimp, Litopenaeus vannamei. Fish Shell-
fish Immunol, 41 (2), 300-307.
LIU, K. F.; CHIU, C. H.; SHIU, Y. L.; CHENG, W. y LIU,
C. H. (2010). Effects of the Probiotic, Bacillus sub-
tilis E20, on the Survival, Development, Stress
Tolerance, and Immune Status of White Shrimp,
Litopenaeus vannamei Larvae. Fish Shellfish Im-
munol, 28 (5-6), 837-844.
LIU, X.; STEELE, J. C. y MENG, X.-Z. (2017). Usage,
Residue, and Human Health Risk of Antibiotics in
Chinese Aquaculture: A Review. Environmental
Pollution, 223 (1), 161-169.
LUIS-VILLASENOR, I. E.; CASTELLANOS-CERVANTES,
T.; GOMEZ-GIL, B.; CARRILLO-GARCÍA, A. E.;
CAMPA-CORDOVA, A. I. et al. (2013). Probiotics in
the Intestinal Tract of Juvenile Whiteleg Shrimp Li-
topenaeus vannamei: Modulation of the Bacterial
Community. World J Microbiol Biotechnol, 29 (2),
257-265.
LUIS-VILLASEÑOR, I. E.; MACÍAS-RODRÍGUEZ, M. E.;
GÓMEZ-GIL, B.; ASCENCIO-VALLE, F. y CAMPA-
CÓRDOVA, Á. I. (2011). Beneficial Effects of Four
Bacillus Strains on the Larval Cultivation of Li-
topenaeus vannamei. Aquaculture, 321 (1), 136-
144.
MAEDA, M.; NOGAMI, K.; KANEMATSU, M. y
HIRAYAMA, K. (1997). The Concept of Biological
Control Methods in Aquaculture. In Live Food in
Aquaculture (pp. 285-290). Netherlands: Springer.
MAEDA, M.; SHIBATA, A.; BISWAS, G.; KORENAGA,
H.; KONO, T.; ITAMI, T. et al. (2013). Isolation of
Lactic Acid Bacteria from Kuruma Shrimp (Mar-
supenaeus japonicus) Intestine and Assessment of
Immunomodulatory Role of a Selected Strain as
Probiotic. Mar Biotechnol (NY), 16 (2), 181-192.
MARTÍNEZ‐CÓRDOVA, L. R.; EMERENCIANO, M.;
MIRANDA‐BAEZA, A. y MARTÍNEZ‐PORCHAS, M.
(2015). Microbial‐Based Systems for Aquaculture
of Fish and Shrimp: an Updated Review. Reviews
in Aquaculture, 7 (2), 131-148.
Probióticos: una realidad en el cultivo de camarones. Artículo de revisión
R e v . p r o d . a n i m . , 3 0 ( 2 ) , 5 9 - 7 3 , 2 0 1 8
MELGAR VALDÉS, C. E.; BARBA MACÍAS, E.;
ÁLVAREZ-GONZÁLEZ, C. A.; TOVILLA
HERNÁNDEZ, C. y SÁNCHEZ, A. J. (2013). Microor-
ganisms Effect with Probiotic Potential in Water
Quality and Growth of the Shrimp Litopenaeus
vannamei (Decapoda: Penaeidae) in Intensive Cul-
ture. Rev Biol Trop, 61 (3), 1215-1228.
MELO, P. D.; FERREIRA, G. P.; LIMA, P. V. y CORREIA,
D. S. (2015). Cultivo do camarão marinho com bio-
flocos sob diferentes níveis de proteína com e sem
probiótico. Revista Caatinga, 28 (1), 202-210.
MIANDARE, H. K.; YARAHMADI, P. y ABBASIAN, M.
(2016). Immune Related Transcriptional Responses
and Performance of Litopenaeus vannamei Post-
Larvae Fed on Dietary Probiotic PrimaLac®. Fish
& Shellfish Immunology, 55 (1), 671-678.
MING, L.; ZHANG, Q.; YANG, L. y HUANG, J.-A.
(2015). Comparison of Antibacterial Effects be-
tween Antimicrobial Peptide and Bacteriocins Iso-
lated from Lactobacillus plantarum on Three
Common Pathogenic Bacteria. International Jour-
nal of Clinical and Experimental Medicine, 8 (4),
5806-5811.
MOHAPATRA, S.; CHAKRABORTY, T.; KUMAR, V.;
DEBOECK, G. y MOHANTA, K. N. (2013). Aquacul-
ture and Stress Management: a Review of Probiotic
Intervention. Journal of Animal Physiology and An-
imal Nutrition, 97 (3), 405-430.
MUJEEB RAHIMAN, K. M.; JESMI, Y.; THOMAS, A. P. y
MOHAMED HATHA, A. A. (2010). Probiotic Effect
of Bacillus NL110 and Vibrio NE17 on the Surviv-
al, Growth Performance and Immune Response of
Macrobrachium rosenbergii (de Man). Aquaculture
Research, 41 (2), 120-134.
MUÑOZ-ATIENZA, E.; GÓMEZ-SALA, B.; ARAUJO, C.;
CAMPANERO, C.; DEL CAMPO, R., HERNÁNDEZ, P.
E. et al. (2013). Antimicrobial Activity, Antibiotic
Susceptibility and Virulence Factors of Lactic Acid
Bacteria of Aquatic Origin Intended for Use as
Probiotics in Aquaculture. BMC Microbiol, 13 (1),
15-20.
NAVIN CHANDRAN, M.; IYAPPARAJ, P.;
MOOVENDHAN, S.; RAMASUBBURAYAN, R.;
PRAKASH, S.; IMMANUEL, G. et al. (2014). Influ-
ence of Probiotic Bacterium Bacillus cereus Isolat-
ed from the Gut of Wild Shrimp Penaeus monodon
in Turn as a Potent Growth Promoter and Immune
Enhancer in P. monodon. Fish Shellfish Immunol,
36 (1), 38-45.
NEVES, C.; SANTOS, E. y BAINY, A. C. D. (2000). Re-
duced Superoxide Dismutase Activity in Palae-
monetes argentinus (Decapoda, Palemonidae) in-
fected by Probopyrus ringueleti (Isopoda,
Bopyridae). Dis Aquat Organ, 39 (2), 155-158.
NIMRAT, S.; BOONTHAI, T. y VUTHIPHANDCHAI, V.
(2011). Effects of Probiotic Forms, Compositions
of and Mode of Probiotic Administration on Rear-
ing of Pacific White Shrimp (Litopenaeus van-
namei) Larvae and Postlarvae. Animal Feed Sci-
ence and Technology, 169 (3), 244-258.
NIMRAT, S.; SUKSAWAT, S.; BOONTHAI, T. y
VUTHIPHANDCHAI, V. (2012). Potential Bacillus
Probiotics Enhance Bacterial Numbers, Water
Quality and Growth During Early Development of
White Shrimp (Litopenaeus vannamei). Vet Micro-
biol, 159 (2), 443-450.
NIMRAT, S.; TANUTPONGPALIN, P.;
SRITUNYALUCKSANA, K.; BOONTHAI, T. y
VUTHIPHANDCHAI, V. (2013). Enhancement of
Growth Performance, Digestive Enzyme Activities
and Disease Resistance in Black Tiger Shrimp (Pe-
naeus monodon) Postlarvae by Potential Probiotics.
Aquaculture International, 21 (1), 655-666.
NIU, Y.; DEFOIRDT, T.; BARUAH, K.; VAN DE WIELE,
T., DONG, S. y BOSSIER, P. (2014). Bacillus sp.
LT3 IMPROVES the SURVIVAL of GNOTOBIOTIC
BRINE SHRIMP (Artemia franciscana) LARVAE
CHALLENGED with Vibrio campbellii by
ENHANCING the INNATE IMMUNE RESPONSE and by
DECREASING the ACTIVITY of SHRIMP-ASSOCIATED
VIBRIOS. Vet Microbiol, 173 (2), 279-288.
PANDE, S. J.; NATRAH, M. I.; FLANDEZ, V. B.;
KUMAR, U.; NIU, Y.; BOSSIER, P. y DEFOIRDT, T.
(2015). Isolation of AHL-Degrading Bacteria from
Micro-Algal Cultures and Their Impact on Algal
Growth and on Virulence of Vibrio campbellii to
Prawn Larvae. Applied microbiology and biotech-
nology, 99 (2), 10805-10813.
PANDE, S. J.; SCHEIE, A. A.; BENNECHE, T.; WILLE,
M.; SORGELOOS, P.; BOSSIER, P. et al. (2013).
Quorum Sensing-Disrupting Compounds Protect
Larvae of the Giant Freshwater Prawn Macrobra-
chium rosenbergii from Vibrio harveyi Infection.
Aquaculture, 406 (1), 121-124.
PHAM, T. T.; HO, H. N., y NGUYEN, V. D. (2014).
Screening for Bacteriocin-Like Antimicrobial Ac-
tivity Against Shrimp Pathogenic Vibrios and Mo-
lecular Identification of Marine Bacteria from Otter
Clam Lutraria philippinarum. The Thai Journal of
Veterinary Medicine, 44 (3), 345-350.
PRIYAJA, P.; JAYESH, P.; CORREYA, N. S.;
SREELAKSHMI, B.; SUDHEER, N. S.; PHILIP, R. y
BRIGHT SINGH, I. S. (2014). Antagonistic Effect of
Pseudomonas aeruginosa Isolates from Various
Ecological Niches on Vibrio Species Pathogenic to
Crustaceans. J coast life med., 2 (1), 76-84.
QIU, X. y DAVIS, D. (2017). Evaluation of Flash Dried
Yeast as a Nutritional Supplement in Plant‐Based
Practical Diets for Pacific White Shrimp Li-
topenaeus vannamei. Aquaculture Nutrition, 23 (6),
1244-1253.
A. Toledo, N. M. Castillo, Olimpia Carrillo, A. Arenal
R e v . p r o d . a n i m . , 3 0 ( 2 ) , 5 9 - 7 3 , 2 0 1 8
RAMESH, K.; NATARAJAN, H.; SRIDHAR, M.; UMA, V.
y UMAMAHESWARI, S. (2014). Feasibility of
Shrimp Gut Probionts with Anti-Vibrio and Anti-
QS in Penaeid Culture. International Journal of
Fisheries and Aquatic Studies, 1 (3), 26-34.
RENGPIPAT, S.; TUNYANUN, A.; FAST, A. W.;
PIYATIRATITIVORAKUL, S. y MENASVETA, P.
(2003). Enhanced Growth and Resistance to Vibrio
Challenge in Pond-Reared Black Tiger Shrimp Pe-
naeus monodon Fed a Bacillus probiotic. Dis Aquat
Organ, 55 (2), 169-173.
SÁNCHEZ ORTIZ, I.; MARTÍN MARTÍN, L.; GARCÍA
VARELA, Y.; ABAD MÁRQUEZ, Z.; RODRÍGUEZ, R.
F.; RAMÍREZ NÚÑEZ, Y. et al. (2013). Efecto de
Lactobacillus sp. aislado de col fermentada, sobre
el peso y los marcadores inmunológicos del cama-
rón blanco Litopenaeus vannamei. Revista de Salud
Animal, 35 (2), 94-102.
SÁNCHEZ-ORTIZ, A. C.; ANGULO, C.; LUNA-
GONZÁLEZ, A.; ÁLVAREZ-RUIZ, P.; MAZON-
SUASTEGUI, J. M. y CAMPA-CORDOVA, A. I.
(2016). Effect of mixed-Bacillus spp Isolated from
Pustulose ark Anadara tuberculosa on Growth,
Survival, Viral Prevalence and Immune-Related
Gene Expression in Shrimp Litopenaeus vannamei.
Lett Appl Microbiol, 59, 95-102.
SÁNCHEZ-ORTIZ, A. C.; LUNA-GONZÁLEZ, A.; CAMPA-
CÓRDOVA, Á. I.; ESCAMILLA-MONTES, R.; FLORES-
MIRANDA, M. d. C., y MAZÓN-SUÁSTEGUI, J. M.
(2015). Isolation and Characterization of Potential
Probiotic Bacteria from Pustulose Ark (Anadara
tuberculosa) Suitable for Shrimp Farming. Latin
american Journal of Aquatic Research, 43 (1), 123-
136.
SEENIVASAN, C.; RADHAKRISHNAN, S.;
MURALISANKAR, T. y BHAVAN, P. S. (2016, June).
Effects of Probiotics on Survival, Growth and Di-
gestive Enzymes Activities in Freshwater Prawn
Macrobrachium rosenbergii (De Man). Proceedings
of the Zoological Society, 69 (1), 52-60.
SHAZWANI, N.; PIPUDIN, M.; JASMIN, M.; INA-
SALWANY, M.; HARMIN, S. y KARIM, M. (2015).
Evaluation of Antagonism Activity of Potential
Malaysian Probiont Strains, Bacillus spp. JAQ04
and Micrococcus spp. JAQ07 in in vitro Condition
and on Artemia fransisca against Vibrio alginolyti-
cus. Journal of Fisheries and Aquatic Science, 10
(4), 300-310.
Shen, W.-Y.; Fu, L.-L.; Li, W.-F. y Zhu, Y.-R. (2010).
Effect of Dietary Supplementation with Bacillus
subtilis on the Growth, Performance, Immune Re-
sponse and Antioxidant Activities of the Shrimp
(Litopenaeus vannamei). Aquaculture Research, 41
(11), 91-98.
SILVA, E. F.; SOARES, M. A.; CALAZANS, N. F.;
VOGELEY, J. L.; DO VALLE, B. C.; SOARES, R. et al.
(2012). Effect of probiotic (Bacillus spp.) Addition
During Larvae and Postlarvae Culture of the White
Shrimp Litopenaeus vannamei. Aquaculture Re-
search, 44 (1), 13-21.
SMITH, V. J.; BROWN, J. H. y HAUTON, C. (2003). Im-
munostimulation in Crustaceans: Does it Really
Protect Against Infection? Fish & Shellfish Immu-
nology, 15, 71-90.
SONG, Y.-L. y LI, C.-Y. (2014). Shrimp Immune Sys-
tem-Special Focus on Penaeidin. Journal of Marine
Science and Technology, 22 (1), 1-8.
STENTIFORD, G.; NEIL, D.; PEELER, E.; SHIELDS, J.;
SMALL, H.; FLEGEL, T. et al. (2012). Disease will
Limit Future Food Supply from the Global Crusta-
cean Fishery and Aquaculture Sectors. Journal of
Invertebrate Pathology, 110 (2), 141-157.
SUITA, S. M.; CARDOZO, A. P.; ROMANO, L. A.;
ABREU, P. C. y WASIELESKY JR, W. (2015). Devel-
opment of the Hepatopancreas and Quality Analy-
sis of Post-Larvae Pacific White Shrimp Li-
topenaeus vannamei Produced in a BFT System.
Aquaculture International, 23 (2), 449-463.
TAJU, G.; MADAN, N.; ABDUL MAJEED, S.; KUMAR, T.
R.; THAMIZHVANAN, S.; OTTA, S. K. et al. (2015).
Immune Responses of Whiteleg Shrimp, Li-
topenaeus vannamei (Boone), to Bacterially Ex-
pressed dsRNA Specific to VP28 Gene of White
Spot Syndrome Virus. J Fish Dis, 38 (5), 451-465.
TEJERO-SARIÑENA, S.; BARLOW, J.; COSTABILE, A.;
GIBSON, G. R. y ROWLAND, I. (2012). In vitro
Evaluation of the Antimicrobial Activity of a
Range of Probiotics Against Pathogens: Evidence
for the Effects of Organic Acids. Anaerobe, 18 (5),
530-538.
THOMAS, A.; SUDHEER, N. S.; VISWANATHAN, K.;
KIRON, V.; BRIGHT SINGH, I. S. et al. (2014). Im-
munogenicity and Protective Efficacy of a Major
White Spot Syndrome Virus (WSSV) Envelope
Protein VP24 expressed in Escherichia coli Against
WSSV. Journal of Invertebrate Pathology, 123 (1),
17-24.
TORRES, M.; ROMERO, M.; PRADO, S.; DUBERT, J.;
TAHRIOUI, A.; OTERO, A. et al. (2013). N-
acylhomoserine lactone-degrading Bacteria isolated
from Hatchery Bivalve Larval cultures. Microbio-
logical Research, 168 (1), 547-554.
TORRES, M.; RUBIO-PORTILLO, E.; ANTÓN, J.; RAMOS-
ESPLÁ, A. A.; QUESADA, E. y LLAMAS, I. (2016).
Selection of the N-Acylhomoserine Lactone-
Degrading Bacterium Alteromonas stellipolaris
PQQ-42 and of Its Potential for Biocontrol in Aq-
uaculture. Frontiers in Microbiology, 7 (2), 646-
650.
TSENG, D. Y.; HO, P. L.; HUANG, S. Y.; CHENG, S. C.;
SHIU, Y. L. et al. (2009). Enhancement of Immuni-
ty and Disease Resistance in the White Shrimp, Li-
Probióticos: una realidad en el cultivo de camarones. Artículo de revisión
R e v . p r o d . a n i m . , 3 0 ( 2 ) , 5 9 - 7 3 , 2 0 1 8
topenaeus vannamei, by the Probiotic, Bacillus
subtilis E20. Fish Shellfish Immunol, 26 (2), 339-
344.
VASEEHARAN, B. y RAMASAMY, P. (2003). Control of
Pathogenic Vibrio spp. by Bacillus subtilis BT23, a
Possible Probiotic Treatment for Black Tiger
Shrimp Penaeus monodon. Lett Appl Microbiol, 36
(2), 83-87.
VERSCHUERE, L.; ROMBAUT, G.; SORGELOOS, P. y
VERSTRAETE, W. (2000). Probiotic Bacteria as Bio-
logical Control Agents in Aquaculture. Microbiol-
ogy and Molecular Biology Reviews, 64 (4), 655-
671.
VIEIRA, F. N.; JATOBÁ, A.; MOURIÑO, L. P.; BUGLIONE
NETO, C. C.; SILVA, S. D.; SEIFFERT, W. Q. et al.
(2016). Use of Probiotic-Supplemented Diet on a
Pacific White Shrimp Farm. Revista Brasileira de
Zootecnia, 45 (5), 203-207.
WANG, W. y ZHANG, X. (2008). Comparison of Anti-
viral Efficiency of Immune Responses in Shrimp.
Fish & Shellfish Immunology, 25 (5), 522-527.
WANG, Y. y GU, Q. (2010). Effect of Probiotics on
White Shrimp (Penaeus vannamei) Growth Per-
formance and Immune Response. Marine Biology
Research, 6 (3), 327-332.
WANG, Y.-B. (2007). Effect of Probiotics on Growth
Performance and Digestive Enzyme Activity of the
Shrimp Penaeus vannamei. Aquaculture, 269 (1-4),
259-264.
XIA, Z.; ZHU, M. y ZHANG, Y. (2014). Effects of the
Probiotic Arthrobacter sp. CW9 on the Survival
and Immune Status of White Shrimp (Penaeus
vannamei). Lett Appl Microbiol, 58 (1), 60-64.
XUE, M.; WEN, C.; LIANG, H.; DING, M.; WU, Y. y LI,
X. (2016). In vivo Evaluation of the Effects of
Commercial Bacillus Probiotics on Survival and
Development of Litopenaeus vannamei Larvae dur-
ing the Early Hatchery Period. Aquaculture Re-
search, 47 (5), 61-69.
YUNIARTI, A. y MAFTUCH, S. (2015). In vitro and in
vivo Study of Acyl Homoserine Lactone Degrading
Bacillus against Vibrio harveyi. International Jour-
nal of Biosciences, 6 (2), 38-48.
ZIAEI-NEJAD, S.; REZAEI, M. H.; TAKAMI, G. A.;
LOVETT, D. L.; MIRVAGHEFI, A.R. y SHAKOURI,
M. (2006). The Effect of Bacillus spp. Bacteria
used as Probiotics on Digestive Enzyme Activity,
Survival and Growth in the Indian White Shrimp
Fenneropenaeus indicus. Aquaculture, 252 (1),
516-524.
ZOKAEIFAR, H.; BABAEI, N.; SAAD, C. R.;
KAMARUDIN, M. S.; SIJAM, K. y BALCAZAR, J. L.
(2014). Administration of Bacillus subtilis Strains
in the Rearing Water Enhances the Water Quality,
Growth Performance, Immune Response, and Re-
sistance against Vibrio harveyi Infection in Juvenile
White Shrimp, Litopenaeus vannamei. Fish Shell-
fish Immunol., 36 (1), 68-74.
ZOKAEIFAR, H.; BALCAZAR, J. L.; SAAD, C. R.;
KAMARUDIN, M. S.; SIJAM, K.; ARSHAD, A. et al.
(2012). Effects of Bacillus subtilis on the Growth
Performance, Digestive Enzymes, Immune Gene
Expression and Disease Resistance of White
Shrimp, Litopenaeus vannamei. Fish Shellfish Im-
munol., 33 (4), 683-689.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Adrián Toledo, Néstor M. Castillo, Olimpia Carrillo, Amilcar Arenal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


























